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Years of research in software testing has given us novel ways to reason about and

test the behavior of complex software systems that contain hundreds of thousands of

lines of code. Many of these techniques have been inspired by nature such as genetic

algorithms, swarm intelligence, and ant colony optimization. However, they use a

unidirectional analogy – taking from nature without giving back.

In this thesis we invert this view and ask if we can utilize techniques from testing

and modeling of highly-configurable software systems to aid in the emerging field of

systems biology which aims to model and predict the behavior of biological organisms.

Like configurable systems, the underlying source code (metabolic model) contains

both common and variable code elements (reactions) that are executed only under

particular configurations (environmental conditions), and these directly impact an

organism’s observable behavior. We propose the use of sampling, classification, and

modeling techniques commonly used in software testing and combine them into a

process called BioSIMP which can lead to simplified models and biological predictions.

We perform two case studies, the first of which explores and evaluates different

classification techniques to infer influential factors in microbial organisms. We then

compare several sampling methods to limit the number of experiments required in

the laboratory. We show that we can reduce testing by more than two thirds without

negatively impacting the quality of our models. Finally, we perform an end-to-end
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case study on BioSIMP using both laboratory and simulation data and show that we

can find influencing environmental factors in two microbial organisms, some of which

were previously unknown to biologists.

Our findings suggest that the configurable-software analogy holds, and we can

identify the variable and common regions of reactions that change with respect to the

environment.
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Chapter 1

Introduction

Software testing research has produced many techniques to reason about and test

the behavior of software systems. Software systems can be complex, having hundreds

of thousands of lines of code, and can be highly-configurable. Highly-configurable

software contains portions of code (features) that can be turned on or off in varying

combinations depending on user preferences and environmental conditions. For ex-

ample, the web browser Firefox has over 1,900 settings [29] related to security, search,

sync, privacy, and plug-ins. We can underestimate the number of options by consid-

ering all preferences to be binary, and assuming no constraints this gives us over 21900

configurations. We have one software system (browser) and multiple instances based

on the features selected (configurations). This feature-oriented view of software [4]

allows us to model, understand, and validate programs by manipulating common and

variable code separately and by identifying sets of features which influence unique or

undesirable behavior.

Configurability of systems adds a layer of complexity to software, and as such, a

large body of research has focused on testing these systems [15,33,35,58,66,71]. Some

of this research has turned to heuristics to help sample large configuration spaces [15,
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25,47,48,51]. Many of these sampling techniques are derived from natural phenomena

such as genetic evolution [60], intelligent swarming [68], ant colony optimization [10],

etc. This is no surprise, since complex programs share traits with natural systems

such as those found in biology. However, this approach of using biology to help us

reason about software has been unidirectional.

In fact, recent work in systems and synthetic biology has started to look in the

direction of computer science to understand how living cells can be used to perform

work that is designed and programmed by humans [18, 30, 34]. Being able to control

and program cells will aid in the ability to create better biofuels [21,38], understand

and control human health and disease [59, 64], increase food production on marginal

lands [12], control the global climate [72], and even potentially terraform Mars [27,57].

Research in systems biology aims to model, predict and program the behavior of

organisms under specific environmental conditions (food sources, media composition,

light, temperature, etc.) [36]. Synthetic biology works to physically (artificially) insert

code segments into DNA to effectively program biological organisms [30].

The state of the art in microbial modeling is to utilize manually-curated models

which have been meticulously modified by biologists to reflect current literature and

experimental results [6, 20, 32]. A model for E. coli can be seen in Figure 1.1. This

bacterial network contains more than 1,000 reactions (nodes) and 60,000 possible

pathways through the set of reactions [5], which is too complex to analyze in an

ad-hoc manner. Trying to predict or understand the behavior of this organism by

tracing the graph would be like trying to manually extract meaning from a program

with thousands of lines of code. As a result, we are still unable to predict or control

biological organisms well enough to leverage their vast capabilities. Furthermore,

faults in the design and failures in the predictions can have significant ecological and

health consequences [65].
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Figure 1.1: Metabolic Pathway Map for E. coli

Software testing techniques provide us with systematic methods to sample and

infer across a similarly complex space. In this thesis, we utilize software testing

techniques to model and understand biological systems. We view biological organisms

as highly-configurable software systems. The underlying code of the organism is its

genotype and the output (observable characteristics of the organism) is its phenotype.

We can alter the inputs of the system, and observe how the program (organism)

changes. These changes can be external (phenotypic) or internal (reaction coverage).

An example of external variability can be see in Figure 1.2a, where the inputs are light,

temperature and media (liquid or solid environment in which the organism lives), and

the outputs are waste and growth. In this case we can view the organism itself as

a blackbox, ignoring the code within. On the other hand, in internal variability

(Figure 1.2b), we look at the code in the program (organism) and view how its

execution changes with various inputs. Both of these methods can reveal insights
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Figure 1.2: Biological system

about the system. We can also combine them to understand how the inputs change

the reactions, and how the change in reactions affects the phenotype.

Based on this intuition, we have developed a software testing process called

BioSIMP (for Biological Sampling, Inference, Modeling, and Prediction), which sam-

ples, tests, and classifies the inputs to infer influential factors — those factors that

have an impact on the phenotypic outcomes — and model the commonality and vari-

ability of the genomes leading to these behaviors. BioSIMP then produces models to

be used in future predictions. In this thesis we first investigate a selection of classifica-

tion and sampling algorithms that can be used in BioSIMP. We find that classification

using discrete labels and decision trees works best overall. We also evaluate BioSIMP

end-to-end on two real organisms extracted from the human gut, both in a laboratory

setting and via simulation, and discover some previously unknown factors that may

impact their growth in a range of environmental conditions. We find that our soft-

ware analogy has uncovered some subtle — yet interesting — properties of biological

organisms that may lead to novel software engineering techniques and new ways to

view configurable software.
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The contributions of this thesis are:

1. An analogy for Highly-Configurable Biological Systems;

2. A process, BioSIMP, that samples, identifies influencing factors, and then mod-

els biological organisms so that we can predict (and eventually control) their

behavior;

3. Exploration of a selection of sampling techniques and classification algorithms;

4. A case study on two biological organisms that shows our analogy holds and may

lead to interesting biological predictions;

5. A reaction coverage variability model.

The rest of this thesis is organized as follows. Chapter 2 covers background ma-

terial on software testing, machine learning, and systems biology, along with related

work. Chapter 3 describes the process BioSIMP with a running example to guide

the reader. Chapter 4 details a case study to evaluate classification and sampling

algorithms. Chapter 5 contains the full case study of BioSIMP on two organisms in

silico and in vitro. We end with conclusions and future work in Chapter 6.
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Chapter 2

Background and Related Work

We now discuss background and related work on software testing (and its influence

from nature), classification, and systems biology. We present a running example to

demonstrate these topics. We end the chapter with a discussion of related work in

the combination of these topics.

2.1 Software Testing

Testing software is an integral part of any software engineering project. From a report

by the National Institute of Standards and Technology (NIST) [62]:

Based on the software developer and user surveys, the national annual

costs of an inadequate infrastructure for software testing is estimated to

range from $22.2 to $59.5 billion. Over half of these costs are borne by

software users in the form of error avoidance and mitigation activities. The

remaining costs are borne by software developers and reflect the additional

testing resources that are consumed due to inadequate testing tools and

methods.
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Software testing is clearly important to save cost and prevent major failures. Most

real systems however, have too many configurations to enumerate and fully test.

For instance the Linux kernel has been reported to have over 5,000 configuration

options [54] leading to more than 25000 configurations, while programs such as the

GNU compiler, gcc have been reported to have as many as 1061 configurations [15].

Given the complexity of configurable software, techniques have been developed to

sample and characterize faults during testing.

One sampling technique that has been used extensively for sampling configurable

software — and is used in this thesis — is combinatorial interaction testing (or CIT)

[14, 15, 25, 47]. CIT samples broadly and systematically across factors (features) by

generating small (optimized) samples that cover all t-way combinations of factors in

at least one configuration. Underlying most CIT sampling is a mathematical object

called a covering array (CA) which defines the sample. The variable t is called the

strength and determines how broadly we sample. The most common sampling used

in software is t = 2 or pairwise testing. In pairwise testing all pairs of features appear

at least once in the sample.

Many algorithms and tools have been developed to find CIT samples such as a

one row at a time greedy algorithm, the Automatic Efficient Test Case Generator

(AETG) [14], the In Parameter Order General (IPOG) algorithm [39] implemented

in ACTS [1], or simulated annealing implemented in CASA [25]. Other variations

exist which use a variety of heuristic or meta heuristic techniques such as ant-colony

optimization, tabu search, and genetic algorithms. Most existing CIT algorithms will

build samples of strength higher than 2, however most are optimized to work well at

lower strengths (2 or 3) since the literature has shown that software tends to have

mostly low order interactions [37]. Other sampling techniques have been recently

proposed for performance testing [52,55,56], which we investigate in Chapter 4.
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Let us look at an example. Suppose we have a browser that has the settings in

Figure 2.1. Each setting can have a certain number of options (e.g. the setting cookies

has three options: allow, restrict, or block). If we assume there are no constraints in

this model we can calculate the number of all combinations of the possible options.

Since we have three options for cookies and two for remember login information these

settings together make 3 × 2 = 6 configurations. If we continue with this logic, we

get 6× 2× 3× 2× 2 = 144 possible configurations. This is too many test cases to run

by hand efficiently. We can use CIT to sample this space instead. Since literature

has shown that software tends to have mostly low order interactions, we will test this

system with a strength of 2 [37]. Let us assume there is a failure if you have all cookies

blocked and enable loading of a default webpage on startup. The failure could be that

the default page required cookies to load. We would only see this failure occur if we

tested these two options together.

Figure 2.1: A specification of settings for a web browser.

Using CASA, one possible sample can be seen in Table B.4 which contains only

9 of the 144 possible configurations. This is a much more manageable number of

combinations to test. In using CIT, the size of the test suite increases logarithmically

with the number of settings [14]. In this sample Tests 1 and 9 will find the failure.

Note in this case that this pair is actually covered twice.
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Table 2.1: A 2-way covering array for browser example.

Test Cookies Login Crash History Pop-up Load Default
1 Block Enable Disable Custom Block Enable
2 Restrict Disable Disable Custom Don’t block Disable
3 Restrict Enable Enable All Block Enable
4 Restrict Enable Enable Never Don’t block Enable
5 Allow Disable Disable Never Block Disable
6 Allow Disable Enable Custom Block Enable
7 Allow Enable Disable All Don’t block Disable
8 Block Disable Enable Never Don’t block Disable
9 Block Disable Enable All Don’t block Enable

2.1.1 Biology’s Impact on Software Testing

We discuss an analogy between biology and software in this thesis. Examples of al-

gorithms that were inspired by biology include Genetic Algorithms, and Ant Colony

Optimization. These are examples of heuristic optimization algorithms that allow us

to approximate a solution, as the best answer may be difficult to obtain or computa-

tionally infeasible.

Genetic Algorithms are based off of evolution [26]. In evolution we start with an

initial population; that population breeds causing an intermix of DNA, then repeats

this process. Over time, species evolve to optimize themselves to the environment.

In software engineering we can use this model to try to search for a set of parameters

that optimize performance, for example. In this method we can start with an initial

valid set of parameters, mate them to produce a mixture of new solutions, and then

mutate them to add in a factor of randomness. An example of a mutation could be

randomly selecting a setting and altering it. We can then evaluate each set and choose

the best to mate for the next iteration. This algorithm has inspired the creation of a

JUnit test generation tool called EvoSuite [19].
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Another algorithm inspired by biology is Ant Colony Optimization [16]. The ant

colony algorithm is a technique to find the optimal path through a graph. In nature,

ants will begin a search for food by randomly going down a path. If an ant finds a food

source, they will bring some food back to the colony and lay down a pheromone trail.

Other ants will sense this trail and follow this path (to food). The pheromones do

eventually dissipate, which allows the colony to move onto another food source. This

algorithm has been used in test case generation [10] and test case prioritization [45].

2.2 Classification

Classification is a technique from machine learning. Machine learning is built upon the

field of statistics for data analysis bringing in logic from computational sciences and

mathematics to form concrete predictions and models. Machine learning is essentially

teaching computers how to learn by providing an algorithm to define the learning

process and a set of training data to learn from [44]. Once a model has been learned,

the computer can incrementally build upon its models to keep learning as new data

comes in. The model can also be used on new testing data to make predictions.

In this work we will focus on the concept of classification. Classification is the

problem of building a model on collected data, then using this model to make a

prediction on a new observation and learn relationships between attributes. Most

classification algorithms work by splitting up the training data by attributes. These

attributes can be defined by the user or learned. Each attribute will correspond to

some property of the problem. For example, Yilmaz et al. [70] use configurations of

a system as the attributes, and whether or not the systems successfully completes

(PASS) or results in a failure (ERROR). The relationships between attributes and

between attributes and class labels can tell us a lot about the problem at hand.
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2.2.1 Decision Trees

Decision Trees are one type of classification algorithm. The training data will consist

of a set of attributes and class labels. Each node in the tree represents an attribute,

and each edge from that node represent a possible value of that attribute. The leaves

of the tree are class values. A new data instance can start at the root of the tree

and follow the path that represents its attributes to predict its class value. We can

evaluate a decision tree based on the accuracy (Equation 2.1) of the data reserved for

testing.

Accuracy =
# correctly classified

all instances
× 100% (2.1)

The algorithm to build a decision tree looks at each attribute and chooses the

one with the highest information gain. Information gain is the change in entropy.

Entropy (or disorder) means how much difference there is in the data. If by splitting

the data by an attribute we create more consistent division of the data, this is good, we

decrease entropy and increase information gain. The pseudocode for this algorithm

can be found in Algorithm 1. We walk through the calculations on entropy and

information gain below.

Entropy(A) =
c∑

i=1

−pi log2 pi (2.2)

Entropy of a node is formally defined in Equation 2.2 where c is number of different

classes in our problem and pi is the proportion of DATA belonging to class i. For

example, in a problem with two classes, if a node has an equal number of each class

the entropy would be
∑2

i=1−
1
2
log2 1

2
= 1 which is the highest (worst) entropy we
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can get. This makes sense, because if we are standing on this node, the data is not

distinguishable even though they belong to different classes.

To figure out the information gain of an attribute we need to calculate if the

new entropy (assuming we split on that node) is less. Therefore the equation for

information gain of an attribute A is defined by Equation 2.3.

InfoGain(A) = Entropy(A)−
∑

v∈V alues{A}

|Av|
|A|

Entropy(Av) (2.3)

We start with the existing entropy of attribute A, then subtract the new entropy.

The new entropy is a weighted combination of the entropies for each value A could

have, with the weight being how many instances fit that value. We will demonstrate

with an example below.

Algorithm 1 Decision_Tree(DATA)
List A = all attributes
if ∀d ∈ DATA: C(d) = c then . Check for a leaf

Create a leaf of c return
for each attribute a ∈ A do . Calculate InfoGains

Calculate InfoGain(a)
Create a decision node for the largest InfoGain(a) . Choose best node
for each value v of a do

Decision_Tree(DATA satisfying v) . repeat for each new edge

Let us go back to the browser example and see if we can generate a classification

tree to show us what feature(s) will cause a failure, and if we can learn the nature

of their interaction in the case of multiple features. We will use the 144 tests as our

training data. Instead of using test data, we will analyze the model produced to infer

about the cause of the failure. First we need to fill in the class labels for each of the

data instances. Based on our assumption of the cause of the failure, any configuration

which has all cookies blocked and load default webpage enabled would be classified as
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FAIL and the rest as PASS. We begin by calculating the starting entropy of the

entire data. In this example we have two classes in which 24 tests belong to FAIL

and 120 belong toPASS. Therefore, the entropy is− 24
144

log2
24
144
− 96

144
log2

96
144
≈ 0.821.

Now let us calculate what the information gain would be if we split based on

the load default webpage setting (Equation 2.3). We have 2 possible values of this

attribute (enable, or disable).

InfoGain(Load Default) = 0.821−
∑

v∈V alues{A}

|Av|
|A|

Entropy(Sv) (2.4)

= 0.821− |Aenable|
|A|

Entropy(Aenable)−
|Adisable|
|A|

Entropy(Adisable)

(2.5)

= 0.821− 72

144
Entropy(Aenable)−

72

144
Entropy(Adisable)

(2.6)

= 0.821− 72

144
× 0.918− 72

144
× 0.000 (2.7)

= 0.821− 0.539 (2.8)

= 0.282 (2.9)

If we repeat these calculations for the rest of the attributes we get the following:

Attribute Information Gain

Cookies 0.654

Login 0.171

Crash 0.171

History 0.170

Pop-up 0.171

Load Default 0.282
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As we can see, cookies gives us the highest information gain. Per the algorithm,

we will make a node (the root node) for cookies and have three edges, one for each

attribute value. On the edges for allow all cookies and restrict 3rd party cookies we

can see that all the configurations lead to PASS, so we create leaf nodes. The decision

tree looks like Figure 2.2 so far. On the edge for block all cookies we must recursively

call Algorithm 1 again.

Cookies	

Pass	(48)	 Pass	(48)	

Allow	all	
cookies	

Block	all	
cookies	

Restrict	3rd	
party	
cookies	

Pass	(24)		
Fail			(24)	

Figure 2.2: The first part of the decision tree for the browser example. The number
in parenthesis indicates how many configurations fall into this category.

We repeat the calculations (left as an exercise to the reader). This time instead

of looking at all 144 configurations, we only look at the ones that follow down the

block all cookies branch, which totals 48 configurations. We will choose load default

webpage on startup as the next attribute with the highest information gain. We

create a node for it, then two edges for enable and disable. This time we see that

in all cases with load enabled the configuration FAILED, and in all cases with load

disabled the configuration PASSED. Thus we create two more leaves. There is now

no recursive call and we have completed the algorithm. The decision tree produced

by this algorithm can be seen in Figure 2.3.

We will explore real data in Chapter 5. We can use the decision tree to learn about

the failure. We can see that a failure will occur if cookies are blocked and load default
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Cookies	

Pass	(48)	 Pass	(48)	

Allow	all	
cookies	

Block	all	
cookies	

Restrict	3rd	
party	
cookies	

Enable	 Disable	

Load	
Webpage	

Pass	(24)	Fail	(24)	

Figure 2.3: The decision tree for the browser example. The number in parenthesis
indicates how many configurations fall into this category.

webpage is enabled. Therefore, we can infer that there is an interaction between these

two settings leading to a failure. The computer engineer can now limit their search

for the fault to these two sections of code which saves time.

2.2.2 Weka

Weka is a collection of machine learning algorithms and tools developed by the Ma-

chine Learning Group at the University of Waikato [69]. Capabilities of Weka include:

pre-processing, classification, regression, clustering, association rules, and visualiza-

tion.

Weka has an explorer environment to run single machine learning algorithms. It

also has an experimenter environment to test and compare multiple algorithms and

parameters. Weka can allow function on the command line, and its GNU General

Public License allows it to plug into other applications. We utilize Weka and its

capabilities in this work.
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2.3 Systems Biology

Systems biology is a subfield (and often multidisciplinary field) of biology that uses

mathematical modeling and engineering to study large and complex biological sys-

tems. The field studies systems as a whole, and focuses on the interactions that

different subsystems (modules) may have [18]. Systems biology uses quantitative

modeling to represent organisms as sets of interacting and communicating biochemi-

cal processes [42].

From a computational approach, we can view this as a source code level abstrac-

tion of the organism’s behavior if we consider the organism itself as an executable

program [22]. The most common modeling approach is that of a metabolic net-

work [6, 20, 32]. A metabolic network connects chemical reactions, each representing

a biological function. The models are constructed through an iterative process that

collects information from manually annotated genomes, known pathway databases,

inferences from similar organisms, and the body of literature to build a set of reaction

equations and connect their flow [6]. This information is then integrated with data

about the reaction dynamics (what compounds flow in and out of each reaction),

sub-cellular localization, biomass composition, estimation of energy requirements, re-

action directionality and other constraints into a detailed model of the metabolism.

Figure 2.4 shows the metabolic network of E. coli obtained from the Kyoto En-

cyclopedia of Genes and Genomes (KEGG) database [32], the standard database of

network models. The nodes are compounds that are inputs and outputs to the re-

actions (edges). As inputs to the environment are utilized by the organism, a set

of reactions creates a path through this network resulting in outputs (waste) to the

environment which can be used by other organisms.
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Figure 2.4: Metabolic model for E. coli from the KEGG Database.

This model can be subsequently used for detailed analysis of the metabolic po-

tential of the organism using constraint-based modeling approaches such as a Flux

Balance Analysis [28, 31]. A Flux Balance Analysis (FBA) takes environmental fac-

tors as inputs and uses a linear programming optimization methodology to maximize

flow through the set of equations resulting in an output, for example, the maximum

growth. FBA is a widely used method to quantitatively describe steady-state flux

distributions in metabolic networks and is used to predict growth of organisms under

defined conditions [28]. We use this technique in our case study.

We also point out that these models are theoretical, and may not actually represent

the real genomic software program. Since they are created using limited experimental

data, information from similar organisms are used to fill in the gaps. As a result, some

reactions and paths may be missing, or infeasible reactions and paths may be present

that do not represent the original executable program (the organism). As such, we
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can think about this as working with an imperfect (or static) model of software, which

means we need dynamic techniques to iteratively refine the model [53, 71]. However,

laboratory experimentation is labor-intensive and time-consuming, therefore we must

selectively use this technique.

2.3.1 KBase

The Department of Energy System Biology Knowledgeable — KBase — is an open

source software hub and database designed for systems biology [31]. KBase is a highly

integrated environment that combines data, tools, and results for predictive biology

of microbes, plants, and their communities. A key design choice is that it is collabora-

tive so that users can share data with other users, create new automated analyses via

a scripting language, and publish their results via narrative workflows. KBase allows

users to create end-to-end workflows: generate hypotheses, design experiments, de-

velop analysis workflows, build and validate models, create visualizations, share with

collaborators, and reproduce results.

Account users of KBase have access to a wide array of tools and data. Currently

in KBase there are over 28,000 Genomes and 500 defined medias. There exist 54 apps

(that have been fully released). Their functions range from building metabolic models

to comparing proteomes to RNA-seq analysis and more. A sample of available apps

can be seen in Figure 2.5.

KBase includes a graphical user interface called the narrative interface (Figure

2.6). In a narrative users can upload their own data, access the public data, run apps,

comment, and share. The narrative is build within the Jupyter Notebook which gives

users the ability to write custom scripts. There also exists a Software Development

Kit which allows programmers to develop new apps to add to the system. In this
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Figure 2.5: Sample of apps available in KBase.

work we prototype a classification app into KBase. All these functionalities make

KBase a flexible, collaborative, and end-to-end systems biology platform. A goal of

this work is to ensure our processes can be made usable for bench biologists, therefore

we use KBase, which provides us the option to implement our process as an app for

public use.

2.4 Other Related Work

We next present related work in combinations of the previously described fields.

There has been a large body of research on testing and analyzing configurable

software [15, 33, 35, 41, 58, 66, 71]. We don’t discuss all here, but instead present

related work that connects systems biology with software engineering.
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Figure 2.6: Sample narrative in KBase [3].

Research in systems biology aims to obtain computational and mathematical mod-

els of biological systems by applying an engineering approach [36]. For example,

the concept of executable biology has emerged, which builds dynamic computational

models of cells rather than mathematical [22]. At the same time, synthetic biology

is providing novel tools for the design, realization, and control of the biological sys-

tems by programming genetic code, or DNA [30]. These tools are allowing engineers

to study and access the molecular information processing of biological cells, opening

the road to the control and engineering of biology. The possibility of implementing

novel functionality is not only at the single cell level, but also involves communities

and populations of cells exchanging information with each other [42, 46]. The future

pervasive deployment of genetically engineered cells and their interaction with other

bio-, micro-, and nanotechnology enabled devices through molecular communication

systems and nanonetworks [49] has been recently envisioned as the novel paradigm

of the Internet of Bio-Nano Things [2].
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In recent years, computer science tools such as context-free attribute grammars

have been applied to synthetic biology to aid in the engineering of programs based on

genetic building blocks for known behavior [8]. There is also a standard, SBOL [24],

that allows for new designs of biological programs. This line of research uses a software

abstraction to build biological programs, but does not apply software engineering

techniques and is focused on individual instances of a program.

Finally, automated software requirement analysis and model checking have been

successfully applied to DNA self-assembly in the context of fabricating nano-structures

with processing capabilities [17,40]. This research is the first to apply automated soft-

ware engineering techniques to a biological structure (DNA), however, their purpose

is to program a single function for individual pathways at the nano-level, whereas we

are studying the complex system behavior of an entire organism as it interacts with

its environment.
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Chapter 3

BioSIMP

The laboratory sciences work to model and understand natural phenomena which can

have thousands of interacting specimens. Due to this vast domain space of factors

to study, they must limit the focus of studies to only a few factors. We propose

utilizing sampling methods to be able to experiment on a larger domain space while

minimizing information loss. The analysis on a laboratory study is typically done by

hand using heat maps and restricting interactions to pair-wise. These methods can

be unaware of higher order interactions, thus we might miss out on interesting and

unexpected interactions between metabolites. The laboratory sciences would benefit

from an end-to-end process to help sample and classify results.

We now present BioSIMP, a process to reason about living systems using methods

from software testing. Figure 3.1 shows an overview of BioSIMP with each of the

main steps: Biological Sampling, Inference, Modeling, and Prediction. A preliminary

version of this process was called SCIM [50]. BioSIMP is also presented in [11]. We

first define biological configurable software, then describe the details of BioSIMP. We

use a running example to demonstrate each step.
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Figure 3.1: The BioSIMP Process

3.1 Biological Configurable Software

First consider the metabolic network to be a model-based abstraction of our program

(organism). This model is comprised of lines of code (sets of reactions in the metabolic

model). These lines of code connect up in a complex network showing all possible

paths through these reactions. Each path may affect the output of the program. In the

biological case, this output could be growth, compounds excreted, energy produced,

and more.

Using this analogy, we can measure coverage of this model under differing con-

figurations (environmental conditions). In the model, the reactions are the primitive

elements. We can view these as methods (or statements) within the code (and can

measure reaction or code coverage), where we evaluate the expected behavior against

the observed behavior – i.e. we can use software testing.
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3.2 Initalization Step

Before using BioSIMP we must identify the features that will be varied within the

environment. The choice of these depends on the biological organisms under study

and requires some domain knowledge. Let us start a running example where we have

an organism Z with four features of interest — A, B, C, D — and assume they are

all binary (ON or OFF). These features can be anything from media elements, to

amount of light, to pH level. For instance, in our experiments in Chapter 5 we have

modeled the nutrient components of the microorganisms’ culture medium. However,

we could also model light, temperature, levels of oxygen, pH, etc.

3.3 Sampling

The first step — biological sampling — selects configurations to test. One option is

to exhaustively test all combinations. However, the cost of biological experiments is

quite high. It can take up to a month to run an experiment with only seven factors.

We can also use sampling techniques such as CIT to intelligently sample the input

space.

The full combinatorial space of our running example can be seen in Table 3.1.

We have four attributes each with two possible options giving us 24 = 16 possible

combinations. Let us suppose we ran an experiment to collect data for this problem.

Sixteen tests might be a lot to run, so we use CIT sampling to intelligently choose

only a portion of these tests. One possible 2-way covering array generated by CASA

has only five tests: 4, 6, 8, 10, 16 (highlighted in Table 3.1).

Experiments are then performed which involve executing the organisms’ genomic

software under those configurations. This can be done in the laboratory, or via
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Table 3.1: Full combinatorial set of tests for organism Z. A 1 means the attribute is
present or ON in the system, and a 0 means the attribute was not present or OFF.
A class of G means it was classified as Growth, and NG for No_Growth.

Test A B C D Class
1 0 0 0 0 NG
2 1 0 0 0 G
3 0 1 0 0 NG
4 0 0 1 0 NG
5 0 0 0 1 NG
6 1 1 0 0 G
7 1 0 1 0 NG
8 1 0 0 1 G

Test A B C D Class
9 0 1 1 0 NG
10 0 1 0 1 NG
11 0 0 1 1 NG
12 1 1 1 0 G
13 0 1 1 1 NG
14 1 1 0 1 G
15 1 0 1 1 NG
16 1 1 1 1 G

simulation; we use both in our study. In our example we are going to study whether

or not the organism grows. Suppose in our example we run the sample of 5 tests and

get the output in Table 3.2. This output will feed into step 2.

Table 3.2: Class values for the subset of tests in the running example.

Test A B C D Class
4 0 0 1 0 No_Growth
6 1 1 0 0 Growth
8 1 0 0 1 Growth
10 0 1 0 1 No_Growth
16 1 1 1 1 Growth

3.4 Inference by Classification

Once experiments are complete, we move to inference. In our experiments we use

traditional classification trees. We have tried a few classification techniques and

have found that classification trees work well for identifying influential factors (see

Chapter 4). We leave a full evaluation of alternative inference techniques for future

work. Using these classification models we infer invariants at the behavioral level (e.g.
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we always see growth or a particular growth threshold under a particular combination

of factors).

Let us suppose we ran the full combinatorial space through weka; this will give us

our target tree. The result for our example can be see in Figure 3.2a. If A is OFF we

have No_Growth. Otherwise it depends next on B. If B is ON then we have Growth,

otherwise we move to the last influencing factor C. If C is ON we have No_Growth,

and Growth if C is OFF. Another interesting inference is that D does not show up;

D is not an influencing factor so has no impact on the class value.

For our example the features A, B, C, and D are the attributes, and Growth or

No_Growth is the class value. If we run the subset of tests though weka’s implemen-

tation of the J48 classification trees with default parameters, we get the tree in Figure

3.2b. If our sampling is good, then we expect that the sampled tree will resemble the

target tree. In this tree we can see that A is the influencing factor. If A is ON then

we have Growth, otherwise when A is OFF we get No_Growth. This tree perfectly

sorts all 5 tests.

CIT has been combined with the use of classification trees for fault characterization

to identify patterns of interactions among the features that lead to classes of faults

[41, 70, 71]. Trees are heuristically produced with confidence levels, and guide the

exploration of the identification of important factors for failures [69]. Yilmaz et al. [70]

have shown that CIT is effective at finding classification trees using only strength 2

and 3— all configurations may not need to be considered.

We can see that while these trees are not the same, they do share similarities such

as A being the top influential factor. So while the sampled tree does not give us

the complete story, the information it does reveal (that A is an influencing factor) is

accurate.
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A	

B	

C	Growth	(4)	

Growth	(2)	

ON	

ON	

ON	

OFF	

OFF	

OFF	

No_Growth	(8)	

No_Growth	(2)	

(a) Classification tree for the complete
set of tests in the running example.

A	

No_Growth	(2)	Growth	(3)	

OFF	ON	

(b) Classification tree for the subset
of tests in the running example.

Figure 3.2

3.5 Modeling

Once we identify the influential factors, we model these and map the behavioral

(phenotypic) invariants to code level invariants (reactions). Code level invariants can

be found by locating the specific reactions executed (covered) and their flow. For

example we always see growth or a particular growth threshold under a particular

combination of factors which translate into the influential factors. We can do this

mapping using simulation (what we did in our experiments) or by instrumenting the

organisms with markers to identify particular intermediate outputs (e.g. we can use

Carbon-13 isotope labeling to trace and quantify metabolites and intermediates [61]).

We then can identify the common and variable code which will allow us to focus

only on the relevant code in the organisms’ network model. This information can be

used to iteratively focus lab experimentation only on the important factors, so that

we improve the existing models and narrow the gap in representing true organism

behavior.

Let us look at a set of three reactions that might occur in our example. Figure

3.3 shows two configurations, one with A and B, and one with just B. According to

the classification in Figure 3.3 AB should grow and A should not grow. The next

question would be to ask what the code level invariants are that cause this behavior.
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(a) Combination of A and B.
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(b) Only B turned ON.

Figure 3.3: Reaction Paths in Different Environments for Z

When the configuration is AB (Figure 3.3a) we see that reactions 1–3 are executed.

In this model R1 creates a′ from a and R2 creates d from b. Then R3 takes both a′

and b and creates d. It turns out that two d’s are needed for growth. So in the case

of AB, growth is able to occur.

Now let us look at the configuration of just B seen in Figure 3.3b. This time

R1 is not executed (or covered) at all. R2 executes as normal. Then, surprisingly,

R3 executes in the reverse direction. In this pathway of execution two d’s are not

produced so we do not have growth.

AB u u u
B u ¤

R1 R2 R3
Figure 3.4: Reaction coverage variability model for Figure 3.3

We can model the variability in the execution of these reactions. We have devel-

oped a reaction coverage variability model that we show in Figure 3.4. A diamond

represents forward (or positive) flow and an open circle represents reverse (or nega-

tive) flow.
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3.6 Prediction

Finally, we can use our new models to predict future behavior in the organisms, and

ultimately we will be able to program them to behave in new ways. For example

we could use the model for Z we developed in this Chapter to force either growth or

no_growth by fixing the inputs (A, B, C, D) to the system. We can also ask questions

about what effect various environmental conditions have on the phenotype. We can

also look into why these effects occur by finding the reactions that cause them.

The potential impact of BioSIMP is that it leads to simplified abstract mod-

els for understanding and predicting behavior in organisms, and can identify major

metabolic factors from bacterial and archaeal genomic data without the need for ex-

haustive experimentation or manual curation. In applying BioSIMP to real organisms

in our study, the biologists on this project have been able to extract new meaning

from our data and are excited about the possibilities of using BioSIMP to reason in

novel ways about system behavior (see Section 5.5.4 for details).

3.7 Summary

BioSIMP is an end-to-end process designed for laboratory science, inspired from soft-

ware testing. This method is built upon the idea of modeling biological systems as

highly-configurable software programs. BioSIMP results in reduction of experiments

required, abstract model creation, and variability analysis resulting in inferences on

influential factors. The insights can lead to new discoveries and predictions that

otherwise might be overseen.

In the next chapter we investigate characterization and sampling techniques. In

Chapter 5 we present our case study of BioSIMP on two real organisms.
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Chapter 4

Evaluating Algorithms for

Characterization and Sampling for

the Biological Domain

In the biological sciences we can study how different environmental features interact

with each other. In nature there are thousands of organisms and compounds that

interact. In the human gut there are as many as 1012 bacteria per cm3 [67]. Each

of these interactions can have an effect on various phenotypes such as growth of

organisms, methane produced into the atmosphere, and more. A set of data collected

for such an experiment might include a list of configurations of the various factors

and some sort of output that we choose to measure.

Once we collect this data we must analyze it. In this work we are interested in

classification of the data into certain classes. Classification builds a model of the data

based on the various features and sorts them into classes. For example, in a biological

study the features could be pH level, amount of light, and media composition. Then

the classes might be whether an organism grows or not. Classification has been used
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in software testing in work such as [41,70,71] where the classes are if a test passes or

fails. We can use these classification models to infer the behavior of the system. We

can easily see how the various factors interact and what outcomes they cause.

Ideally, we would like to model and understand all of these interactions, but since

the number is so vast this is not feasible. We have a similar problem in software

testing, and use intelligent sampling to reduce the number of experiments we have

to run. The cost of biological experiments is also quite high, requiring hours of

preparation and weeks of manual labor. Thus we utilize the sampling techniques we

use in software testing to reduce these costs.

BioSIMP is modular in that it can apply to a number of laboratory based dis-

ciplines. We limit the focus of this study to experiments in biology. Furthermore,

in each step there exist multiple approaches that can be taken. In this chapter we

explore both Classification and Sampling techniques. We investigate a few sample

representatives and analyze their performance on the data in our study. Characteri-

zation and sampling techniques can have different effects on different types of data,

thus we limit the domain to ensure our case study on BioSIMP is optimized for our

data.

4.1 Classification Techniques

Weka sorts it’s classifier algorithms into categories: Bayesian, trees, rules, functions,

lazy, multi-instance, and miscellaneous. Lazy learning is best for continuous data

and has low readability so we do not consider them. Likewise, we do no consider

multiple instance learning because it produces a collection of models rather than a

single model. The algorithms in the miscellaneous category work on naive algorithms

that only consider ranges of values of which we have none. Thus based on the specifics
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of our data problem we narrow these down to: Bayesian, trees, rules, functions. We

choose a representative from each category to compare and evaluate. Respectively

they are: NaiveBayes, J48, PART, MultilayerPerceptron.

Decision trees work by locating the attributes that create the largest information

gain which is a measure of how evenly the data is split into its classes. The algo-

rithm will iteratively choose and attribute and recursively go down the tree. A full

description of decision trees can be found in Chapter 2.2.

Bayes produces probability estimates. In short, Bayes gives you the most probable

explanation for an outcome. We can predict the probability based on the prior proba-

bility, probabilities of observing the previous data, and the new observed data. Bayes

theorem in itself states P (h|D) = P (D|h)P (h)
P (D)

where P (h) is the initial probability that

the hypothesis h holds (or prior probability). P (D) is the probability of observing

the data we did. So P (D|h) is the probability of observing D given that hypothesis

h holds (posterior probability). Bayes chooses the most probable class value of a new

observation given the previous observations. For a new test t and previous test T, we

can predict the new class as: x(t) = MAXxi∈C(P (a1, a2, ..., an|xi))P (vj).

Rules algorithms generate a list of ordered logical rules to determine class values.

The algorithm we use (PART) uses a divide-and-conquer approach by building partial

decision trees and translating paths to leaves into rules [23].

Function algorithms generate a list of mathematical functions that can be solved

to determine class values. These functions are based on the attribute variables and be

either discrete or continuous; we study both. The algorithm we use is the Multilay-

ered Perceptron, which in summary, is a neural network using the backpropegation

algorithm [44].

Though we focus on classification, we also investigated regression algorithms which

predict a raw value instead of a class value. We then use this predicted raw value
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to determine the class. We experiment with both the regression form of Multilayer

Perceptron and a regression tree (M5P). M5P creates a decision tree where the leaves

are linear equations of the attributes.

4.2 Sampling Techniques

We explore 3 methods of sampling: CIT, Random, and Option-Wise. We use Random

as a base comparison of two sampling methods used in practice. CIT is described in

Chapter 2.1.

Recent work on performance testing [52,55,56], sample configuration spaces. They

argue sampling for performance differs from sampling for fault detection since per-

formance measures are not discrete. This work is relevant to our research since we

also see results (such as growth) that are real-valued. We have two ways to approach

this. We can classify into discrete categories (i.e. Growth/No_Growth) or we can

use the raw values. As seen in our previous section, we used both discrete labels

(classification) and real values (regression). In a similar manner, we look to the liter-

ature on performance testing to aid us in finding alternatives to CIT sampling. We

summarize some of this work next and then discuss two methods (option-wise and

negative option-wise) that we include in our comparison study.

In performance sampling the methods of Option-Wise Sampling and Negative

Option-Wise Sampling have been developed [55]. These methods allow for constraints

in the system, but in our case we have no constraints so we can simplify them. Option-

Wise (OW) sampling minimizes all possible interactions by only turning on one factor

at a time. Negative Option-Wise (negOW) works in the opposite manner by only

turning off one factor at a time. Examples of what these sampling techniques would

look like on our example from Chapter 3 on organism Z can be seen in Table 4.1.
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Table 4.1: Sets of tests for organism Z. A 1 means the attribute is present or ON in
the system, and a 0 means the attribute was not present or OFF.

Table 4.2: Option-Wise

A B C D
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Table 4.3: Negative Option-Wise

A B C D
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

One performance testing approach looks at progressive sampling and projective

sampling which iteratively builds test sets until either cost is minimized or the gra-

dient of the learning curve is below a certain threshold [52]. For our laboratory

experimentation this iterative process is not realistic given the setup cost of exper-

iments, but this is left as future work for our simulated experiments. Another idea

from this work is a heuristic for developing an initial sample set. The goals of this

initial set are fundamentally different than a representative model sample set, but we

still consider this as a sampling method in future work.

Another sampling method from performance testing by Siegmund et al. [56] devel-

ops a model of feature interactions using their impact on performance. They obtain

raw performance values to determine the impact each feature has on a configuration.

Although they make some additive assumptions about performance values that might

not hold true in our case, we are interested in attempting this approach as future work

as we consider attribute selection.

4.3 Study

We explore two research questions to investigate the effectiveness of classification and

sampling algorithms on B. theta and M. smithii in the laboratory and in simulation.
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RQ1: What classification technique works well for our data?

Independent VariablesWe experiment with six algorithms J48, PART, Multilayer-

Perceptron (classification), NaiveBayes, MultilayerPerceptron (regression), and M5P.

Dependent Variables We use the complete configuration space as our training set,

and a 10-fold cross validation [44]. In 10-fold cross validation you split the data into

10 equal sets, train on nine sets, and test on the remaining set. This is repeated

so you test on each set once. The final metrics reported are averaged over these 10

runs. A paired T-test statistically compares two populations of data. We use the

experimenter in Weka (described in Chapter 2.2) to compare these approaches.

RQ2: What sampling technique works well for our data?

Independent Variables We test on CIT, Random, Option-Wise, and Negative

Option-Wise. For CIT we generate 30 samples of each strength from 2-6 (as 7 would

be exhaustive) for the feature model using the CASA tool [25]. We generate 30 due to

the stochastic nature of CASA. Random is compared to CIT by randomly choosing

the same number of tests as a CIT sample. For example, in a 2-way CIT sample we

see between 4 and 6 test cases. So to compare to random we choose 100 tests of size

4, 5, and 6 for a total of 300 random tests. Option-Wise and Negative Option-Wise

create only one instance each of size 7. However, both methods focus on two-way

interactions so we can compare their performance to 2-way CIT samples.

Dependent Variables We use the sample data as our training set and evaluate

the results against the full (128) data set to compare how well they predict the full

model. We evaluate the quality of the classification trees using both the accuracy

and the F-measure, two common metrics for this type of problem. The accuracy

tells us the percentage the model correctly classified (4.1), while the F-measure (4.4)

is a balance between the precision (4.2) and recall (4.3). Precision calculates the
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number of true positives (TP) divided by the sum of true positives and false positives

(FP). Recall measures the ratio of the true positives, to the sum of true positives and

false negatives (FN). We use the J48 classifier (an unpruned C4 decision tree) from

Weka [69]. Classification trees require a training set to build the model, and a testing

set to evaluate the model.

Accuracy =
# correctly classified

all instances
× 100% (4.1)

Precision =
TP

TP + FP
(4.2)

Recall =
TP

TP + FN
(4.3)

F −measure =
2RP

R + P
(4.4)

4.4 Data Collection

We study two types of microbes extracted from the human gut: Bacteroides thetaio-

taomicron (B. theta) and Methanobrevibacter smithii (M. smithii). These microbes

share an evolutionary past and are hypothesized to interact in a synergy that benefits

both organisms. We study these organisms both in the laboratory (in vitro) and in

simulation (in silico). Changes in the abundance of intestinal B. theta and M. smithii
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have been linked to nutrition-related disorders such as anorexia and obesity [9, 43].

A greater understanding of these microbes and their interaction can help us create

better models in order to enhance our understanding of human health.

As our attributes we identified a set of nutritional compounds (factors) based on

the known requirements and products of each organism’s metabolic system. These

attributes are Glucose, Hematin, Formate, H2, Vitamin B12, Acetate and Vitamin K.

Each of these compounds can either be present in the solution (ON) or not (OFF).

We utilize growth of the organisms in the given media as the class value.

We use both laboratory experimentation in vitro and simulations in silico using

KBase [31]. We provide only the detail necessary to understand this study. Further

detail on experimentation can be found in Chapter 5.

4.4.1 Laboratory Experimentation

Our coworkers in the laboratory provide us with growth values for all 128 media

configurations in replicates of eight. Since the laboratory is open to human error

factors (resulting from pipetting errors, splashing, or cross contamination) we use

Chauvenet’s criterion for data removal [63] to eliminate data that is likely to be

spurious. To make the final determination of Growth or No_Growth, we compare

against 8 negative controls (media plates without any of the seven compounds, which

we know will lead to no growth). We use a high stringency statistical test (5.1) over

the set of eight replicates; if it satisfies the equation we classify it as Growth, otherwise

No_Growth. In this equation, OD is the optical density and STD is the standard

deviation. 1

1In the case of regression we perform this classification on the predicted growth values.
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OD(xi)− STD(x1 :x8) > ODavg(n1 :n8) + 2[STD(n1 :n8)] (4.5)

For each data point xi we compare its optical density minus the standard deviation

of the 8 duplicates to the average optical density over the negative control’s (n1...n8)

duplicates. We provide some leniency by adding twice the standard deviation of the

8 duplicates back in. We use the mode of the 8 duplicates for each configuration as

the result.

For B. theta we removed 56 of the 1024 data points as outliers using Chauvenet’s

criterion. ForM. smithii 52 of 1024 data points were removed. To avoid observer bias,

combinations were removed from the analysis when three or more biological replicates

of the eight were significantly different from the mode. Of the 128 combinations seven

from B. theta and 16 from M. smithii were removed.

4.4.2 KBase Simulations

In our simulated environment, KBase, we begin by building the metabolic model.

The genomes of B. theta and M. smithii are provided in KBase. We use the Build

Metabolic Model app which translates the organism’s genome to protein sequences

from a protein phylogeny database. This provides the initial model. In the first step,

the model may be incomplete. We created the 128 different media configuration files

and for each ran the Gapfill Metabolic Model app to obtain 128 Gapfilled Models.

Next we run each of the 128 gapfilled models through the Run Flux Balance Analysis

(FBA) app to obtain predicted growth values.
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4.5 Results

We now present results for our two research questions on the effectiveness of various

sampling and classification techniques.

RQ1: What classification technique works well for our data?

Table 4.4: Weka Experimenter results for all four data sets (rows) on 4 different
algorithms (columns). Values are accuracies using 10 fold cross-validation. The clas-
sification algorithms were compared using a paired T-test. A “*” means that algorithm
performed significantly worse, no symbol means there is no statical difference. The
last row shows how many out of the 4 data sets was Better/Same/Worse compared
to the J48 Decision Trees.

Classification Regression
Dataset J48 PART Multi-P Bayes Multi-P M5P
B. theta Lab 95.30 96.19 96.03 93.40 90.06 94.23
M. smithii Lab 89.21 86.74 86.27 72.97* 73.33 75.83
B. theta Simulation 98.45 98.45 94.38* 98.45 97.56 97.56
M. smithii Simulation 96.13 92.84* 93.99 95.97 73.59 74.87
(Better/Same/Worse) (0/3/1) (0/3/1) (0/3/1)

Table 4.4 displays the results for each algorithm tested on the four data sets we

have (B. theta in the lab, B. theta in simulation, M. smithii in the lab, M. smithii

in simulation). Among the classification algorithms, the J48 tree method is the only

algorithm to preform statistically equal or better than the others. Although the

difference between the four is not huge, trees are preferred. The regression algorithms

only perform comparably on B. theta with both algorithms in simulation and M5P

in the laboratory. In all other cases, J48 performs better.

Another factor to include is readability of results. The end-user for this work

would be a biologist, therefore they need to be able to quickly and easily interpret

results. All outputs for B. theta in the laboratory can be found in Appendix B.

Decision trees offer the quickest explanation of the relationship between attributes.

Rules are also quite simple to follow, but can get cumbersome to follow if there are
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too many. Neither Bayes nor multilayer perceptrons offer a visual representation of

their models. They do however give weights to attributes which we consider using

in future work to consider attribute selection. We leave a formal evaluation of the

usability as future work.

Conclusion: Since Decision trees perform statistically equal or better than the

others and has an added readability factor we choose this method for our study.

RQ2: What sampling technique works well for our data?

Results for B. theta in simulation can be seen in Table 4.5, M. smithii in simulation

in Table 4.6, B. theta in the laboratory in Table 4.7, and M. smithii in the laboratory

in Table 4.8.

Table 4.5: B. theta Simulation

CIT
strength (size) Acc. STD Fm

2-way (4-6) 70.35 0.10 0.62
3-way (10-12) 98.40 0.00 0.98
4-way (21-25) 98.40 0.00 0.98
5-way (39-42) 98.40 0.00 0.98

6-way (64) 98.40 0.00 0.98
Random

size Acc. STD Fm
4-6 54.96 18.51 0.44

10-12 85.99 14.53 0.83
21-25 97.73 3.81 0.98
39-42 98.42 0.23 0.98

64 98.44 0.00 0.98
OW

size Acc. Fm.
7 25.00 0.10
negOW

size Acc. Fm.
7 48.44 0.32

Table 4.6: M. smithii Simulation

CIT
strength (size) Acc. STD Fm

2-way (4-6) 53.36 0.12 0.45
3-way (10-12) 81.46 0.06 0.79
4-way (21-25) 94.84 0.03 0.94
5-way (39-42) 95.88 0.01 0.94

6-way (64) 96.09 0.00 0.94
Random

size Acc. STD Fm
4-6 42.53 14.68 0.34

10-12 67.20 13.31 0.53
21-25 82.38 6.66 0.78
39-42 91.27 5.04 0.86

64 95.28 1.94 0.92
OW

size Acc. Fm.
7 37.50 0.21
negOW

size Acc. Fm.
7 21.09 0.07

In Table 4.5 we can see that 2-way CIT samples do not preform well. However,
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Table 4.7: B. theta Laboratory

CIT
strength (size) Acc. STD Fm

2-way (4-6) 82.96 0.18 0.81
3-way (10-12) 93.04 0.02 0.93
4-way (21-25) 92.90 0.02 0.93
5-way (39-42) 93.81 0.02 0.94

6-way (64) 93.40 0.00 0.93
Random

size Acc. STD Fm
4-6 66.66 18.76 0.59

10-12 90.50 9.10 0.90
21-25 92.25 3.02 0.92
39-42 93.05 1.99 0.93

64 94.11 1.95 0.94
OW

size Acc. Fm.
7 57.02 0.41
negOW

size Acc. Fm.
7 42.98 0.26

Table 4.8: M. smithii Laboratory

CIT
strength (size) Acc. STD Fm

2-way (4-6) 57.11 0.09 0.52
3-way (10-12) 66.96 0.06 0.66
4-way (21-25) 74.70 0.06 0.74
5-way (39-42) 83.04 0.05 0.83

6-way (64) 90.54 0.02 0.90
Random

size Acc. STD Fm
4-6 57.40 8.57 0.50

10-12 64.81 7.51 0.63
21-25 72.82 7.01 0.72
39-42 80.98 6.22 0.81

64 88.16 4.41 0.88
OW

size Acc. Fm.
7 43.74 0.27
negOW

size Acc. Fm.
7 56.25 0.41

3-way and up perform with very high accuracy (98.4) and low standard deviation

(less than 0.1). For Random we do not see comparable results until at least 21 test

cases. Even with 21-25 tests the accuracy is slightly less, and the standard deviation

is higher (3.81). We do see Random perform slightly higher with more than 39 test

cases and a low standard deviation, but this is reaching the scope of too many tests.

The OptionWise algorithms do worse than all the other options.

The results for M. smithii in simulation are similar. In this case we do not get over

90% in a CA until a 4-way. Random does not compare at this level until sizes 39-42

and with significantly more standard deviation. Option-Wise still does not compare

here.

The results are almost identical in the laboratory as seen in Tables 4.7 and 4.8.
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Conclusion: Although Random can perform comparably to CIT samples in 4-

way and higher, the standard deviation is much higher in most cases. In this case

CIT is preferable. Similarly, OptionWise is not accurate enough to compare.

4.6 Threats to Validity

We choose only a selection of sampling and classification techniques in these experi-

ments. We believe the algorithms chosen are a generally good representation of the

state of the art and diverse.

We also evaluate the effectiveness of these methods only on the data we use for

our case study (Chapter 5). However, choosing a classification method is typically

dependent on the data itself. Future work would include running these experiments

on more sets of data and comparing.

4.7 Summary

We evaluated six different classes of classification algorithms (Trees, Rules, Bayes,

Functions, Regression Trees, Regression Functions) on all four of our data sets. Deci-

sion trees perform statistically the same and better and are the most readable. Thus

we choose to use classification trees in our further studies.

We also evaluated three sampling techniques (CIT, Random, Option-Wise). We

show that CIT can produce the same or better results with far less standard deviation

than the other approaches. In this study we also discover we must sample at higher

levels (4-6 way) to show 90% of the influential factors. While this is high for software

systems, it reduces laboratory experiments by at least half, a significant gain given

the cost of experiments.
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Chapter 5

Evaluating BioSIMP

In this chapter we present a case study to evaluate the feasibility of using BioSIMP.

While not a formal user study, we test the effectiveness with a team of biochemists at

the University of Nebraska-Lincoln. We test BioSIMP on two real organisms extracted

from the human gut and seven environmental factors in the form of compounds in

media the organism grows in. These organisms have been a focus of study because of

their role in human health. Some parts of this case study has been published in [11]

and experimental artifacts can be found at [7]. We answer the following four research

questions, one for each step in BioSIMP.

• RQ1 - Inference: Can we use classification to identify invariants in microbial

metabolism from uncurated genomes?

• RQ2 - Sampling: How well does a sampling technique commonly used in

software testing, CIT, work to identify the influencing factors?

• RQ3 - Modeling: Do we see both variable and common regions in the coverage

of reactions in the metabolic model?
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• RQ4 - Prediction: How well can our inferences and models help predict future

behavior and guide experiments?

5.1 Configurable Biological Systems

We study the same microbes extracted from the human gut as in Chapter 4: Bac-

teroides thetaiotaomicron (B. theta) and Methanobrevibacter smithii (M. smithii).

These microbes have evolved together in the oxygen-free environment of the human

gut. The waste products of B. theta are hypothesized to be removed and used by

M. smithii in a synergy that benefits both microbes. B. theta breaks down dietary

compounds that human cells cannot utilize directly. Changes in the abundance of in-

testinal B. theta and M. smithii have been linked to nutrition-related disorders such

as obesity [9].

Independent Variables We choose seven variable compounds: Glucose, Hematin,

Formate, H2, Vitamin B12, Acetate, and Vitamin K. Each of these compounds can

either be present in the solution (ON) or not (OFF). We hypothesize that these are

important factors which will impact whether or not the organisms will grow. There

is also a common set of compounds that all media contain. There are no known

constraints on this model.

Dependent Variables We also utilize growth of the organisms in the given media

as the dependent variable. For RQ1 we evaluate the quality of the classification trees

using both the accuracy and the F-measure. Classification trees require a training

set to build the model, and a testing set to evaluate the model. For RQ1 we use the

complete configuration space as our training set, and a 10-fold cross validation [44].

This type of cross validation has also been used in [70] on configurable software. In

RQ2 we use the sample data as our training set and evaluate the results against the
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full data set to compare how well they predict the full model.

For RQ3 we count the number of elements (reactions) that are common for all

configurations and which ones vary between configurations obtained from our simu-

lation environment. A positive flux means the reaction was executed in the forward

direction, a negative flux in the reverse direction, and zero means that there was no

net flux. Each reaction equation must have one of these outputs.

5.2 Case Study Workflow

The workflow of this case study can be seen in Figure 5.1.

Figure 5.1: Case Study Workflow
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In silico we begin by generating the 128 media files. These files are the input

to our simulation system. KBase provides us with two outputs: reaction fluxes and

growth class for each 128 configurations. The reaction fluxes are used in RQ3 to

generate a reaction coverage map.

In vitro we begin by creating the 128 medium and use them in the experiments

described in Section 4.4.1. The lab provides us with a second set of growth classes.

For RQ1 we use the growth classifications from all 128 configurations in vitro and

then again for the in silico data. We use Weka [69] to generate the classification trees.

For RQ2 we created 30 covering arrays of each strength from 2-6 for the feature

model using the CASA tool [25]. We collect the same information for our analysis

but use only the sampled data to build the classification trees.

5.3 Laboratory Experimentation

The laboratory experiments follow the same procedure as in Section 4.4.1 performed

by coworkers at the University of Nebraska-Lincoln. Each of the 128 media config-

urations in replicates of eight across were placed on 32 plates (96-wells each) before

inoculation with either B. theta or M. smithii. Plates were incubated in an anaerobic

chamber with N2/CO2/H2S atmosphere (no oxygen) in either the presence or absence

of 5% hydrogen gas for one week (B. theta) or two weeks (M. smithii).

Since the laboratory is open to human error factors we use Chauvenet’s criterion

for data removal [63] to eliminate data that is likely to be spurious. To make the final

determination of growth or no growth, we compare against 8 negative controls (media

plates without any of the seven compounds, which we know will lead to no growth).

We use a high stringency statistical test (5.1) over the set of eight replicates. In this

equation, OD is the optical density and STD is the standard deviation.
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OD(xi)− STD(x1:x8) > ODavg(n1:n8) + 2[STD(n1:n8)] (5.1)

For each data point xi we compare its optical density minus the standard deviation

of the 8 duplicates to the average optical density over the negative control’s (n1...n8)

duplicates. We provide some leniency by adding twice the standard deviation of the

8 duplicates back in. We use the mode of the 8 duplicates for each configuration as

the result.

For B. theta we removed 56 of the 1024 data points as outliers using Chauvenet’s

criterion. ForM. smithii 52 of 1024 data points were removed. To avoid observer bias,

combinations were removed from the analysis when three or more biological replicates

of the eight were significantly different from the mode. Of the 128 combinations seven

from B. theta and 16 from M. smithii were removed.

5.4 KBase Simulations

For the simulation we ran a 3-step process. Step 1 is completed only once while steps

2 and 3 are repeated for each configuration.

(1) Build Draft Model Before we can simulate a growth experiment, we need to

build the metabolic model. The genomes of B. theta and M. smithii are provided

in KBase. We use the Build Metabolic Model app in KBase which translates the

organism’s genome to protein sequences from a protein phylogeny database. Functions

of the proteins are assigned based on a nearest-neighbor identity to proteins of known

function from other microbial or eukaryotic proteins. Functions are then mapped

using the known biochemical pathways in KEGG [32]. This provides the initial model.
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(2) Gapfill Metabolic Model In the first step, the model may be incomplete.

Not all protein sequences can be identified and some reactions that are needed to

synthesize biomass will be missing. The gapfilling algorithm [28] provides a way to

fill in those missing links by adding known reactions from manual curation or from

a global database to the model in order to force growth, if possible. We created the

128 different media configuration files and for each ran the Gapfill Metabolic Model

app to obtain 128 Gapfilled Models.

(3) Flux Balance Analysis We run each of the 128 gapfilled models through the

Run Flux Balance Analysis (FBA) app to obtain the net flux through each metabolic

node and the resulting steady-state biomass accumulation rate. This analysis works

by simulating the metabolites flowing through the organism’s metabolic model. We

use this information to build the reaction coverage map for RQ3. We use the biomass

information to build the classification trees in RQ1 and RQ2.

5.5 Results

We now present the results to our four research questions, one for each step of

BioSIMP — Inference, Sampling, Modeling, Prediction.

5.5.1 RQ1: Inference

Figure 5.2 shows the classification trees for B. theta both in vitro (a) and in silico

(b). The experimental data has two categories of outcomes (growth and no growth).

The numbers in parentheses on each leaf are the tree splits for the data that has that

configuration (left) or is mis-classified (right). The experimental tree has an overall

accuracy of 94.22% and an F-measure of .94. The primary split is on Glucose (62 of

the 63 without Glucose did not grow). Glucose is required for growth. When Hematin
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is present in combination with Glucose there is growth. However when Hematin is not

present the organisms grow without Vitamin K, or in the presence of both Vitamin

K and Vitamin B12.

Glucose 

ON OFF 

No Growth 
(63/1) 

Growth 
(31) 

Growth 
(12/1) 

No Growth 
(7/1) 

Growth 
(8) 

Hematin 

Vitamin 
K 

Vitamin 
B12 

ON OFF 

ON OFF 

ON OFF 

Glucose 

ON OFF 

Acetate Medium 
(64/2) 

High(32) Low(32) 

ON OFF 

(a) Experimental Data (b) Simulation Data 

Figure 5.2: B. theta Classification Trees

Figure 5.2(b) shows the tree for the simulation data. The tree is different from the

experimental tree. First, the organism always grows based on the gapfilled metabolic

models (see our discussion in Section 5.4). There are three distinct clusters of the

optical densities, therefore we use a tree with three output values (Low, Medium and

High). The presence of Glucose leads to Medium growth. In its absence, the presence

of Acetate leads to Low growth. Otherwise when neither Glucose nor Acetate is

present there is High growth. This indicates that the gapfill algorithm was able to

find metabolic reactions in their absence that can lead to growth. The accuracy of

this tree is 98.44% with an F-measure of .98.

The classification trees for M. smithii are shown in Figure 5.3 and Figure 5.4. The

experimental tree (Figure 5.3) has an accuracy of 88.39% and an F-measure of .88. In

this organism, the factors interact in a more complex fashion. Vitamin K most often

results in a lack of growth, but in the presence of both Vitamin B12 and Acetate the

organisms can grow. When Vitamin K is absent, Formate leads to growth. Without

Formate, the organism grows without Vitamin B12, or with B12 if Acetate and H2 are

both present.
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Vitamin 
K 

ON OFF 
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(29/4) 

Vitamin 
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Experimental Data 
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H2 

Growth 
(28) 

ON OFF 

No Growth 
(3) 
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Figure 5.3: M. smithii Laboratory Classification Tree

The simulation data for M. smithii is also complex (Figure 5.4). It has a natural

split (determined by a significant change using the standard deviation) into 4 classes

(No Growth, Low, Medium and High). In this tree Glucose is the primary split with

Acetate, Formate and Hematin interacting to inhibit or allow growth. The accuracy

of this tree is 96.09% with an F-measure of .94.

Summary of RQ1. From this data we can conclude that classification trees can

find the influencing factors in the configurations of our environment. We do see that

simulation only finds half of the influencing factors that we find in the lab. We also

find that the simulation often finds alternative routes through the organism, which

may lead to different trees. Without further analysis in the laboratory, we do not

know if these are feasible or not.

Glucose 
ON OFF 

Formate 

ON OFF 

Simulation Data 

Acetate 

Formate 

ON OFF 

High 
(32/5) 

Medium 
(16) Low(16) 

Low(32) 

ON OFF 

Medium 
(32) 

Figure 5.4: M. smithii KBase Classification Tree
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We now present the results of each research question.

5.5.2 RQ2: Sampling

Our next question asks if we can use CIT to sample the configuration space. For each

strength we show the results of 30 different covering arrays for the same model. For

each sample we show both the accuracy and F-Measure. The results are averaged

across samples (there is only one value for the full data set). Based on this data,

Figure 5.5 shows boxplots for each strength CIT on both B. theta and M. smithii. In

B. theta we would need to sample at strength 3 or higher to achieve an accuracy and

F-measure above 90%. For M. smithii, however, we need to go as high as strength

5 or 6 to achieve the same result. Although the laboratory and simulation trees are

different within each organism (see RQ1), we see the same pattern of interaction

strength, suggesting that M. smithii is the more complex organism with respect to

these configurations.

Summary of RQ2. CIT sampling is able to provide classification trees with good

accuracy and F-measures, however, we need to sample at higher strengths (at least 3

for B. theta and 5 or 6 for M. smithii).

5.5.3 RQ3: Modeling

We next use KBase to study the variability in the reactions that are identified in the

model for each of the configurations of our media. Some of these reactions can only

be executed in the forward direction, some only in the reverse direction, and some

can be executed in both directions. We mark positive net flux as forward, negative

net flux as reverse, and a zero net flux as unexecuted.

Table 5.1 shows detailed coverage data. A + indicates forward flow and a −
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Figure 5.5: F-measures by CIT Strength, for laboratory and KBase Data. Horizontal
Line is the tree based on Exhaustive Analysis

indicates reverse flow. In the aggregate model for all configurations of B. theta there

are 950 different reactions. 37.9% are common to all configurations. 29.5% have

positive flow, 8.4% have a reverse flow and 39.8% are uncovered. 212 reactions have

variable coverage depending on the influencing factors in the configuration. The range

of total coverage is between 459 and 477 (48.3-50.2%). We see a similar pattern for

M. smithii.

N u u ¤ ¤ ¤ u u u u u u u u u u u u u u u u ¤ ¤ u u u u

M u u u u u u u u u u u u u u u u u u ¤ ¤ ¤ ¤

L u u u u u ¤ ¤ ¤ ¤ u u u u u u u u u u u u u u u u u u

K u u ¤ ¤ ¤ ¤ u u u u u u u u u u u u u u u u ¤ u u u u

J u u u u u ¤ ¤ ¤ ¤ u u u u u u u u u u u u u u u u u u

I ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ u u u u u u u u u u u ¤ ¤ ¤ ¤ u u u u

H u u u u u u u u u ¤ ¤ ¤ ¤ u ¤ ¤ ¤ ¤

G u u u u u ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ u u u u u u u u ¤ ¤ ¤ ¤ u u u u

F ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ u u u u u u u u u u u ¤ ¤ ¤ ¤ u u u u

E u u u u u ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ u u u u u u u u ¤ ¤ ¤ ¤ u u u u

D u u ¤ ¤ u u u u u u u u u u u u u u u u ¤ ¤ ¤ ¤ u u u u

C u u u u u ¤ ¤ ¤ ¤ u u u u u u u u u u u u u u u u u u

B u u u u u u u u u u u u u u u u u u ¤ ¤ ¤ ¤

A u u ¤ ¤ ¤ ¤ u u u u u u u u u u u u u u u u ¤ u u u u
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Figure 5.6: Variable Coverage Model. Sample of 37 reactions in B. theta.
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Table 5.1: Reaction Coverage of Metabolic Model

B. theta (950 Reactions)
Count Percent

Common coverage+ 280 29.5%
Common coverage− 80 8.4%
Common Total 360 37.9%
Uncovered 378 39.9%
Variable coverage 212 22.3%
Total Coverage Range: 459-477 48.3-50.2%

M. smithii (908 Reactions)
Count Percent

Common coverage+ 249 27.4%
Common coverage− 79 8.7%
Common Total 328 36.1%
Uncovered 352 38.8%
Variable coverage 228 25.1%
Total Coverage Range: 430-448 47.4-49.3%

We found 14 patterns of coverage (A-N) among the 128 configurations. These are

shown in Figure 5.6 for a subset (37) of the reactions. We limit the reactions to make

the graph readable, but complete data is available in Appendix (and Appendix for

M. smithii). In this graph, the 14 configuration patterns are shown on the y-axis

and the reaction number is shown on the x-axis. A diamond represents forward (or

positive flow) and an open circle represents reverse (or negative flow). The white

space means uncovered. As we can see the coverage pattern varies and as we often

see in configurable software – we will either cover the reaction or not, depending on

the configuration that is selected.

Discussion. We now look at an example of three reactions in B. theta to exam-

ine this phenomena more closely. Figure 5.7 shows a tiny section of the genome-scale

metabolic model under three different environmental conditions (a-c, representing the

mixture of the base growth medium). In addition to the common base set of com-

pounds, they contain Glucose, Hematin, and both Glucose and Hematin respectively.
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Each subfigure shows inputs (left) and outputs (right) and the reactions through

which those inputs and outputs flow. There are three reactions denoted as ovals

(#R38, #R14 and #R6). Reaction #R38 (top) behaves identically in all three con-

ditions, but the other two change. The shaded compounds (e.g. SA) are inputs to

the reactions, while the unshaded, dashed reactions (e.g. ADP) are not activated in

these conditions.

For easy reference the numbered reactions in this example (#6 and #14) are

highlighted in Figure 5.6. We do not see the other reaction (#38) since it is part of

the common coverage and has positive flow for all combinations of the configuration

model.

(a) Glucose (b) Hematin (c) Glucose + Hematin 

SCoA 

HS 

GLY 

ATP 

H+ 

SA 

CoA 

ADP 

CoA 

OSH 

CO2 

ADP 

ALA 

SCoA 

PO4 

ATP 

R38 

R6 

R14 

PO4 SA 

SCoA 

HS 
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CoA 
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Figure 5.7: Reaction Paths in Different Environments

In the presence of Glucose only (Figure 5.7(a)), all three reactions occur. We

observe two compounds (SCoA and CoA represented as darker shades) that appear

both as inputs and outputs (the outputs can feed into another reaction that utilizes

that compound). If we now move to Figure 5.7(b), the condition in which cells only

have Hematin, we find that reaction #R14 (middle) is not covered during the program

execution. However, the other two reactions behave similarly to when Glucose alone is

in the culture medium. Finally, in Figure 5.7(c) we have a combination of Glucose and
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Hematin. Here we observe an unexpected pattern in the flux through the reactions.

First, we again only observe two reactions that are executed in the model shown in

Figure 5.7(c), despite the presence of both compounds (i.e. the reactions are not

additive). Second, we see that #R6 (bottom) behaves in the reverse direction under

the combination of these factors (the inputs and outputs are switched). This real

example suggests several things.

1. There is variability in how our code executes under differing environmental

conditions.

2. There is some common behavior (e.g. reaction #38).

3. The reactions can utilize different inputs and outputs under differing system

configurations.

This behavior suggests to us that we can view these systems as highly-configurable

software systems and perhaps leverage techniques that we have used from testing and

characterizing software to help infer their behavior and to determine which factors

and/or combinations of factors are influential in changing behavior. In the example it

is clear that both Glucose and Hematin, as well as the interaction of the two, influence

behavior. Other compounds that we have experimented with on B. theta do not lead

to this variability and hence are not influencing factors.

Summary of RQ3. We can obtain a dynamic model of the organims that varies by

different media features. From this experiment we can conclude that only a small part

(less than 26%) of the reaction space varies between configurations. The implication

is that we can target those reaction for further study.
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5.5.4 RQ4: Prediction

In RQ4 we ask how our inferences and models can assist the biologists in simplifying

the understanding of complex biological systems. These insights may also help to

reduce the set of experiments they are required to run.

While not a formal user study, anecdotally the classification trees have proven very

useful for the biologists for sifting through exhaustive phenotype datasets. The graph-

ical trees clearly show which culture medium components resulted in growth and also

suggest previously unknown positive and negative interactions between metabolites.

These classifications hint at unknown gene regulatory networks and novel biochemi-

cal pathways that can be investigated through more invasive physiological, transcrip-

tomic, proteomic, and metabolomic experiments. We present some new observations

next.

For example, the interaction between Vitamin K and Vitamin B12 had not been

previously observed, and has led them to run new experiments to explore the rela-

tionship and its effect on B. theta and M. smithii. This has interesting implications

for obesity, as a diet rich in foods such as fish and kale is high in Vitamin K and

Vitamin B12.

The BioSIMP approach shows that 75% of the reactions in the models are not

affected by the media configurations. These reactions may be either critical to the cell

under all conditions, or are simply unrelated to the factors we tested. The remaining

25% of the reactions shift in response to the available compounds and reactions added

in the gapfill, and identify significant pathway changes that may or may not be

possible in the living cells.

The results of the BioSIMP approach also suggests that existing gapfilling algo-

rithms overestimate metabolism by approximately 50% and as a result underestimate
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the essential metabolite factors by at least factor of 2. This result was independent

of the hereditary lineage of the organism, as the same pattern was observed in a

bacterium, B. theta, and an archaeon, M. smithii. The organisms have significantly

different genome sizes, and completely divergent metabolisms, suggesting that gapfill-

ing and flux minimization algorithms may uniformly overestimate metabolism across

species.

BioSIMP suggests that 5-6 factor CIT will sample at least 90% of the determinant

factors for growth even for an uncurated genome. While 5 or 6 is high for software

testers, this reduces the laboratory experiments by at least half, a significant gain

given the cost of experiments.

5.6 Summary

We show that BioSIMP is able to find influential factors in both the laboratory and in

simulation on two human microbes. We also show that at most 26% of the reactions

in the reaction network are variable allowing biologists to focus only on a narrow part

of the network to understand behavior. We also note some differences with respect

to software, such as higher strength is needed in CIT sampling and that reaction

coverage is not binary as is code coverage.

Our analysis of reaction coverage has given us the following insights:

1. There is variability in how our code executes under differing environmental

conditions.

2. There is some common behavior.

3. The reactions can utilize different inputs and outputs under differing system

configurations.



www.manaraa.com

58

This behavior suggests to us that we can view these systems as highly-configurable

software systems and perhaps leverage techniques that we have used from testing and

characterizing software to help infer their behavior and to determine which factors

and/or combinations of factors are influential in changing behavior.
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Chapter 6

Conclusions and Future Work

In this thesis we have presented a view of highly-configurable biological organisms

in order to utilize software engineering techniques to reason about their behavior

under different configurations. We present a process — BioSIMP — that models

environmental configurations and then uses software testing techniques to sample,

classify the results to infer influential features, and build models based on these

inferences. This information can then be used to predict future behavior of the

biological systems.

In a case study on classification techniques we found that J48 decision trees work

as well or best out of our sample algorithms. Regression algorithms are comparable

in one our of datasets, and future work lies in utilizing the weights on features hidden

in the models. We also experimented on four different sampling techniques from

software testing. We show CIT provides the highest accuracy under low strengths

(2-4), and comparable accuracies and a lower standard deviation than Random in

higher strengths (5-6).

In a case study on two human microbes, we show that BioSIMP is able to find

influential factors in both the laboratory and in simulation. We also show that up to
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a quarter of the reactions in the reaction network are variable allowing biologists to

focus only on a narrow part of the network to understand behavior.

We also note some differences with respect to software. Using CIT sampling we

find that the interaction strengths needed to get quality trees in the biological systems

are higher (3-6 way) compared to the usual 2-3 way in software, suggesting the need

for more robust testing algorithms.

We were not expecting the notion of bi-directional coverage of the model when

we started. Since reactions can be covered in two directions and we lack an analogy

for this in software testing it brings up some interesting questions. We believe that

this may be useful to reason about types of coverage in software that is also directed

(perhaps for instance in user interface models that are represented as graphs or state-

machines), or in data flow analysis. While data flow analysis has the ability to identify

directional flow [13], it is not currently used due to scalability.

These differences can lead to novel software testing techniques which may also be

applied to highly-configurable software.

In future work we plan to look into a larger variety of machine learning algo-

rithms. Specifically looking at algorithms that incorporate cross terms will be useful

in ranking the individual effectiveness of attributes. Along these lines, we want to

explore the concept of attribute selection instead of building full models. The idea of

regression models may also play into this. We would also like to continue our survey

of performance testing algorithms and perhaps use their methods to weight attributes

and provide raw growth values.

We also plan to explore alternative sampling techniques for this process, and

develop the idea of directional code coverage. We would also like to apply BioSIMP

to explore additional organisms. On the biological side, we plan to study the new

factors we have identified more closely and evaluate the quality of our predictions and
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how we can use them more broadly.

We would also like to implement BioSIMP as an app into KBase to allow bench-

biologists to utilize its capabilities.
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Appendix A

Weka Algorithm Output

We present the output for the seven algorithms — J48, NaiveBayes, PART, Multi-

layerPerceptron (classification), MultilayerPerceptron (regression), M5P — explored

in Chapter 4. Results shown are for B. theta in the laboratory.

Figure A.1: J48
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Figure A.2: PART
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Figure A.3: Multilayer Perceptron (Classification)
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Figure A.4: Bayes
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Figure A.5: Multilayer Perceptron (Regression)
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Figure A.6: M5P Tree

Figure A.7: M5P Linear Models
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Appendix B

CIT Sample Results

We present tables including all classification trees generated by our sampling tech-

nique. We ran covering arrays from strength 2-6 with 30 runs of each. We present

one of each structure of tree seen in the 30 samples, frequency out of the 30 runs,

accuracy on the complete data set, and F-measure on the complete data set. We also

note that the values in the leaves of a tree may not represent all occurrences of that

tree, however the topology structure is the same.
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Table B.1: B. theta Laboratory CIT

2-way

Tree Frequency Accuracy F-measure

22 93.00 0.93

4 57.00 0.41

2 53.00 0.53

1 50.00 0.50

1 50.00 0.51
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3-way

Tree Frequency Accuracy F-measure

29 93.00 0.93

1 83.00 0.82

4-way

Tree Frequency Accuracy F-measure

27 93.00 0.93

1 90.00 0.90

1 88.00 0.88
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1 88.00 0.88

5-way

Tree Frequency Accuracy F-measure

25 93.00 0.93

4 98.00 0.98

1 98.00 0.98
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6-way

Tree Frequency Accuracy F-measure

30 93.00 0.93
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Table B.2: M. smithii Laboratory CIT

2-way

Tree Frequency Accuracy F-measure

8 53.00 0.53

7 56.00 0.41

7 67.00 0.67

3 44.00 0.27

3 71.00 0.71
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2 50.00 0.50

3-way

Tree Frequency Accuracy F-measure

6 71.4 0.715

3 65.2 0.653

3 67.0 0.671

2 64.3 0.618
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2 73.2 0.713

2 70.5 0.683

2 63.4 0.606

2 69.6 0.675

1 67.0 0.644
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1 73.2 0.713

1 44.6 0.413

1 70.5 0.683

1 75.0 0.735

1 55.4 0.527
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1 65.2 0.633

1 67.86 0.656

4-way

Tree Frequency Accuracy F-measure

2 73.2 0.728

2 71.4 0.715

2 78.6 0.783
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2 67.0 0.671

1 73.2 0.728

1 83.0 0.827

1 75.0 0.735

1 81.3 0.813
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1 75.0 0.746

1 83.0 0.827

1 70.5 0.700

1 76.79 0.766

1 73.2 0.713
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1 81.3 0.811

1 64.3 0.618

1 72.3 0.720

1 68.8 0.682

1 77.7 0.774
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1 70.5 0.702

1 75.9 0.755

1 89.3 0.893

1 75.0 0.751

1 63.4 0.610
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1 80.4 0.802

1 75.0 0.751

1 75.9 0.756

5-way

Tree Frequency Accuracy F-measure

4 83.04 0.827

4 89.29 0.893
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3 75.9 0.750

2 83.04 0.827

2 86.61 0.867

2 88.39 0.884

2 89.30 0.893

2 89.30 0.893
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1 74.1 0.737

1 76.79 0.764

1 78.57 0.787

1 78.60 0.786

1 78.60 0.787

1 86.60 0.867
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1 86.61 0.867

1 88.39 0.884

1 88.39 0.884

6-way

Tree Frequency Accuracy F-measure

17 92.9 0.929

13 88.4 0.884
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Table B.3: B. theta Simulation CIT

2-way

Tree Frequency Accuracy F-measure

16 73.4 0.643

11 73.4 0.650

1 51.6 0.430

1 39.1 0.344

1 37.7 0.330

3-way

Tree Frequency Accuracy F-measure
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30 98.4 0.984

4-way

Tree Frequency Accuracy F-measure

30 98.4 0.984

5-way

Tree Frequency Accuracy F-measure

30 98.4 0.984

6-way

Tree Frequency Accuracy F-measure

30 98.4 0.984



www.manaraa.com

88

Table B.4: M. smithii Simulation CIT

2-way

Tree Frequency Accuracy F-measure

9 62.5 0.536

4 58.6 0.447

4 62.5 0.536

3 37.5 0.321

2 50.0 0.429

2 41.4 0.327
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1 29.7 0.226

1 37.5 0.321

1 28.9 0.221

1 58.6 0.447

1 66.4 0.632

1 37.5 0.321

3-way

Tree Frequency Accuracy F-measure
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15 83.6 0.814

11 83.6 0.814

3 66.4 0.632

1 71.1 0.686

4-way

Tree Frequency Accuracy F-measure

12 96.1 0.943
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5 96.1 0.943

3 96.1 0.943

2 96.1 0.943

1 88.3 0.899

1 88.3 0.899
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1 89.8 0.912

1 91.4 0.926

1 91.4 0.926

1 91.4 0.926

1 94.5 0.950
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1 96.1 0.943

5-way

Tree Frequency Accuracy F-measure

8 96.1 0.943

6 96.1 0.943

6 96.1 0.943

2 94.5 0.950



www.manaraa.com

94

2 96.1 0.943

2 94.5 0.950

2 96.1 0.943

1 96.1 0.943

1 96.1 0.943

6-way

Tree Frequency Accuracy F-measure
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30 96.1 0.943
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Appendix C

B. theta Coverage Model

We present the Reaction Coverage model described in Section 5.5.3. We show the

flow of reactions for all 950 reactions in B. theta for the 14 (A-N) patterns of coverage.

A + indicates forward flow, a − indicates reverse flow, and nothing indicates a net

flow of zero.
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Appendix D

M. smithii Coverage Model

We present the Reaction Coverage model described in Section 5.5.3. We show the flow

of reactions for all 908 reactions in M. smithii for the 30 (A-AD) patterns of coverage.

A + indicates forward flow, a − indicates reverse flow, and nothing indicates a net

flow of zero.
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